
Cognits:  A Portable Library of Intelligent Classes  1

Cognits:  A Portable Library of Intelligent Classes
Steven M. Lewis, Ph.D.

Member of the Technical Staff
Computer Systems Division

The Aerospace Corporation, El Segundo, Calif.  90245

Abstract

Cognits is a C++ class library designed to facilitate the development of large object-oriented applications.  The
library  includes  classes  that  parallel  many  of  the  functions  available  with  MacApp,  and  other  classes  are
available for scientific graphics and image processing.  Unlike MacApp, however, with Cognits both data and
screen objects are built from the same object classes, allowing the use of a model-controller-view paradigm. In
this schema, the responsibility for the construction and maintenance of displays is given to the display objects,
rather than to the represented objects.  The library consists of approximately 80,000 lines of code defining about
200 classes.  Approximately two-thirds of the classes are widgets responsible for displaying specific data on the
screen.    The use of  controls  and dialog boxes is  generally  replaced by the use of  objects  that  are given
responsibility for specific sections of a window.

Applications developed with Cognits come with built-in object and class browsers, which allow developers to
examine any object in the system and trace interconnections between networks of objects.  Most windows in
Cognits  applications  are  dynamic,  with  the  type  and placement  of  objects  determined  at  run  time.   Most
programs allow the code to generate default object placements.  Static windows, whose contents are known at
compile time, are developed by writing the code to generate the resulting objects.  Resources representing size,
location,  color,  and  font  may be  altered  from within  the  application  by  using  click-and-drag techniques  to
rearrange the window.  The delivered application offers the same capability to the user. 

Cognits  code  is  written  to  run  in  Macintosh,  X  Windows,  and  MS  Windows  environments.   Portability  is
accomplished by generating a virtual graphic interface layer for each target machine.  Events on each platform
are read, transformed into canonical events on the virtual machine, and passed to system-independent software.
Drawing  and  windowing  calls  are  converted  from calls  to  the  virtual  machine  to  calls  on  the  underlying
hardware.

The library is currently being used to support five different applications:  a medical application running on the
Mac and the PC; two satellite-scheduling programs running on the Mac and the Sun;  a decision-support tool
running on the Mac, PC, and the Sun; and an image-processing tool running on the Mac.

Cognits illustrates the use of intelligent objects as an aid to the management of large applications.  The virtual
machine demonstrates one approach to the generation of system-independent code for the Macintosh and other
platforms.

Introduction

Graphic  windowing  systems  are  complex.   The
development  of  a  user  interface  may  represent
from  60  to  80%  of  the  time  involved  in  the
development  of  a  complex  project.   The  full
management of a windowing system is a complex
process  requiring  considerable  expertise  on  the
part of the programmer. The Cognits project aimed
at giving the programmer access to the power of
modern  windowing  systems  without  requiring

windowing  expertise  on  the  part  of  the
programmer.   Cognits  allows for development  at
different levels, ranging from a rapid prototyping
level  that  allows the  programmer  to  specify  the
bare  minimum,  to  full  control  of  the  graphical
environment.

In  implementing  Cognits  on  the  Macintosh  the
goal was to develop a widget set that sufficiently
abstracted away the Mac toolbox so that, except
for  a  small,  system-dependent  library,  the  same



Cognits:  A Portable Library of Intelligent Classes  2
code could run on a number of different platforms.
The classic 



Cognits:  A Portable Library of Intelligent Classes  3
Mac widget sets, MacApp and TCL, are too closely
tied to specific features in the  Macintosh toolbox
to support this degree of portability.

Another goal  was to build into  the basic objects
methods that would aid developers in debugging
applications.   Tools  such  as  object  and  class
browsers are normally built into external tools.  In
Cognits these were made part of every application.
Adding these tools adds approximately 50k bytes
of  code  which  makes  the  standard  Hello  World
application  approximately  300k  bytes  of  code.
There is negligible speed penalty for this and most
other functionality.

Design Objectives

Philosophy

The  major  innovation  in  object-oriented
programming is the notion of dividing both code
and  data  into  independent  modules  that  can  be
instantiated  as  objects.  The  development  of  an
object-oriented  program involves  the  assignment
of responsibilities to specific objects, as well as the
establishment of relationships between objects to
allow  messages  to  be  passed  to  objects  having
specific responsibilities.

Views

The idea underlying Cognits is that a display on
the screen represents a view or representation of
data within the program.  Objects on the screen
may represent actions, as in the case of buttons, or
data, as in the case of, say, text fields and graphs.
Objects  on  the  screen  may  allow  the  user  to
manipulate the data within the program or merely
observe  them.   This  approach,  pioneered  in
Smalltalk,  is  called  the  model-view-controller
approach, where the internal data are the model,
on-screen representations are the views, and user
interactions  with  these  views  constitute  the
controller.   In Cognits,  views and controllers are
the  same  object  and  are  treated  as  a  unary
concept.

Cognits  significantly  improves  the  model-view-
controller approach by assigning responsibility to
objects  in  the  system,  so  that  models  are
responsible for the maintenance of their own data.
They  have  little  knowledge  of  displays  on  the
screen  and  no  knowledge  of  pixels,  colors,  or
mouse  clicks  (which  are  handled  by  the  view-
controller objects known as "Cognits").  Views, on
the  other  hand,  must  understand  a  great  deal
about  the objects  they intend to  represent.   For

almost every object on the screen, a corresponding
data  item of  the  user’s  program is  represented,
and Cognits must  understand that item.   When
user interaction is enabled, Cognits supports user
modification of the program’s data.  As objects are
developed to represent data within the program,
corresponding Cognits will be developed to allow
the representation of these data.  Just as complex
structures may be built from simple substructures,
complex  Cognits  may  be  built  by  aggregating
simpler ones.

A major problem in the development of interfaces
is the specification of the details of managing the
user's  interaction  with  objects  on  the  screen.
These details include determining when the object
should be drawn, what to do when a mouse click
occurs on the object, what to do when the object’s
window  is  closed,  and  so  on.   The  interface
objects,  the  Cognits,  handle  the  details  of  this
interaction  for  the  user.   In  general,  the
declaration of a Cognit contains all the information
required to manage the object.  As is illustrated in
the examples below, the developer needs to know
very little about the underlying Cognit structure to
create reasonable interfaces.

Two classes of data may be represented by Cognits
—"smart" and "dumb".  Classical data,  ints floats,
and structs are "dumb." For example, unless there
is external coding, the address of an  int  cannot
tell  a  representing  object  what  type  of  data  are
represented or when the data are altered.   This
places  a  burden  on  the  widgets  and  the
programmer  to  keep  the  image  on  the  screen
consistent with the data in memory.  In contrast,
objects are "smart".  Any object in the class library
has methods for dealing with representations on
the  screen.   Objects  are  "aware"  that  they  are
represented on the screen and can thus update the
display when they are altered.  The display itself is
also  capable  of  sending  messages  to  an  object,
including requests for the type of object and the
requirements of a display.  The most sophisticated
displays represent objects.

While the models, the underlying data, have little
responsibility  to  understand  the  details  of  the
interface in terms of window placement, color, or
font,  they  do  have  responsibilities  to  cooperate
with  the  interface.   Models  whose  data  have
changed are required to request the interface to
update its display.  When a data object is disposed
of, it must also guarantee the disposal of all views.
The  management  of  these  responsibilities  falls
under the 



Cognits:  A Portable Library of Intelligent Classes  4
broader  heading  of  interobject  connectivity,
discussed in detail below.

System Architecture

Connectivity

A major issue in object-oriented design concerns
the  maintenance  of  relationships  among  objects.
Any  time  two  objects  establish  a  persistent
relationship, that is, one that continues beyond the
scope of immediate execution, a number of issues
arise.  Foremost among these is how to maintain
the  validity  of  the  relationship,  as  the  following
example  illustrates.   Suppose  that  object  A
contains a reference to object B.  If at some time in
the future object  B is  destroyed,  any attempt to
access  it  through  that  reference  will  have
disastrous  consequences  for  the  system.   It  is
therefore  necessary  to  guarantee  that  such
references cannot take place.  A "safe" relationship
between A and B is one whereby the destruction of
object  B  requires  the  immediate  destruction  of
object A.  While this sounds Draconian, we can use
this  approach  to  maintain  any  possible
relationship.

In  a  "parent-client"  relationship,  the  client  is
dependent  on  the  parent  for  its  continuing
existence.   Clients  have  only  one  parent  and
maintain a pointer to that parent.  When the client
is destroyed, a message is sent to the parent for it
to  delete  all  references  to  the  client.   When  a
client's  parent  is  destroyed  all  clients  are
destroyed,  so  no  dereferencing  is  possible.
Keeping  a pointer  to  the  parent's  parent  or  any
ancestor is also safe.

A  second  relationship  is  maintained  by  a
connection.  A connection is an object that holds
pointers to a target and a source object.   It is a
client of both target and source, so the destruction
of  either  will  destroy  the  connection.   When  a
connection  is  destroyed,  both  target  and  source
receive  messages  indicating  the  loss  of  the
connection,  and  either  may  take  appropriate
actions.   In  some  cases,  for  example  when  the
target is a view of the source, the destruction of
the source will also cause the destruction of the
view. 

Representation

Any  object  in  the  data  space  may  build  one  or
more  views  on  the  screen.   The  relationship

between  an object  and  a  view  on  the  screen  is
maintained by a special class of connections called
a views.  Every widget that represents an object
maintains  a  pointer  to  the  represented  object.
Widgets without direct representation, such as a
text field representing a float within the object, or
a button in a window representing an object, are
treated as views of the object represented by the
enclosing widget.

The major method relating a view to its object is
Reconcile.  Reconcile causes the view to examine
data  in  the  represented  object  and  adjust  the
window to correspond to the current state of the
model.   The  model  is  never  altered  during  this
operation.   The responsibility  for  developing  the
display rests entirely with the widgets.  The model
merely  has  the  responsibility  to  use  the
UpdateDisplay method,  which  sends  Reconcile
messages to all displays.

When an object  is  disposed of,  it  disposes of  all
connections.  The disposal of the view connection
will kill the corresponding widget.

Implementation Decisions

Design Decisions for Controls

Three possible models have been used for controls.
(1) Under most X Widgets systems and also under
MS Windows, every control, text field, button, and
scroll bar is a separate window.  Events such as
mouse clicks are received by the system and sent
directly to the control's window.  (2) The default
behavior in the Macintosh makes each control an
active  region  within  a  window.   The  operating
system provides a means to locate the mouse click
within a particular control.  However, it is still the
responsibility of the application to call this routine
and then generate the code to handle the event.
(3) A third model treats a window as a canvas on
which  controls  are  painted.   In  this  model  the
operating  system  has  no  knowledge  of  the
structure of the window.  Events are sent to the
window,  which  in  turn  is  responsible  for
determining  which  region  was  selected  and
responding  appropriately.   In  this  approach  the
underlying system sees no physical structures for
controls.  Rather, controls are a logical construct
maintained by each application.

Cognits  uses  the  latter  model  for  its  widgets.
Widgets  within  a  window  are  arranged  in  a
hierarchy,  with  the  window  as  the  root.   Every
widget  defines  a  region  (not  necessarily  a



Cognits:  A Portable Library of Intelligent Classes  5
rectangle) 



Cognits:  A Portable Library of Intelligent Classes  6
under  its  influence.  Child  widgets  lie  above  the
parent, and their visible region of influence is the
intersection  of  their  own region with  that  of  all
ancestors.  The method  PointWithin takes a point
in  a  window  and  returns  the  highest  widget
enclosing  that  point.  The  widget  receives  the
mouse  event  and  is  responsible  for  handling  it.
The  declarations  of  logical  regions  are  the
responsibility of the application.

The choice of drawn widgets increases portability,
since  it  minimizes  the  responsibilities  of  the
underlying GUI (graphical user interface) to those
of providing a canvas and basic drawing routines.
It  means  that  the  application  is  responsible  for
handling  problems  resulting  from  overlapping
widgets. In Cognits, widgets are drawn from back
to front,  ensuring their proper appearance when
an entire window is drawn.  When a lower widget
is  updated,  it  is  responsible  for  updating  all
overlaying widgets.

Cognits  does  not  support  standard  Macintosh
controls  such  as  buttons,  text  fields,  and  scroll
bars.  Instead, objects with the look and feel of the
Macintosh resource controls are drawn by Cognits
objects.   All  active  objects  are  drawn  within  a
window,  with  the  window  object  distributing
events  to  the  appropriate  active object.   This
architecture allows event handing to be achieved
by a method within each object.   The high-level
program need  only  send  an  event  to  the  target
window, receive the target object, and actuate the
proper  method  within  that  object.   All  event
handling  is  then  local  within  each  widget.   As
noted earlier, the decision not to use controls on
any  system  was  critical  to  the  maintenance  of
portability.   Nevertheless,  the  objects  used  by
Cognits are designed to retain the look and feel of
the original controls.

Cognits Controls

Cognits  buttons  were  designed  to  support  all
button types  supported  by  HyperCard:   Shadow,
RoundShadow,  transparent,  and  also  several
buttons  with  a  three-dimensional  look  similar  to
those used by Motif and MS Windows.  Scroll bars
are laid out in a  manner  similar to those of  the
Macintosh scroll bars, but with a drag button that
indicates the fraction of the visible section.

Text  fields  do  not  use  the  Macintosh  text  field
control but instead are drawn objects.  Two classes
of  text  field  are  supported:   output-only  and
editable.   Output-only  text  fields  do  not  allow
editing.  While in some classes of output-only text

field, mouse clicks will initiate specific actions (e.g.
sending the line number to a completion routine),
users may never alter or even drag and select the
underlying text.  Output-only text fields have been
subclassed  to  support  a  variety  of  different
formatting, such as an ability to set tab stops and
draw  boxes  around  portions  of  each  line.
Subclasses of  output-only text  fields can support
the selection of multiple, separated lines and may
be used as a text list-processor object.

Editable  text  fields  are  objects  that  support  the
general behavior of the original text fields but are
restricted to a single font, style, size, and color.  By
retaining all  of  the code within the editable text
field class, interesting behaviors can be supported.
For  example,  as  with  Macintosh  text,  double-
clicking selects  the current  word and allows the
user to draw, to select more words.  Triple-clicking
selects  the  current  line  and  allows  the  user  to
drag,  to  select  more  lines.   Quadruple-clicking
selects all text.

Windows Defined in ResEdit

Cognits does not support standard resources for
the  specification  of  windows,  menus,  and  other
controls.   The decision not  to  support  resources
was  made  for  three  reasons.   First,  the  use  of
resources  requires  a  significant  separation  of
functional  specifications.   The  resources  state
which objects  are  created  within  a  window,  and
the code for  managing the window states  which
objects will  be supported.  However,  there is  no
guarantee that these be the same set of  objects—
i.e., that code will be available for an object in a
window resource or that objects referenced in the
code will be present in the resource.  Anyone who
thinks  resources  are  "safe"  should  try  using
ResEdit  to  add  an item as  the  first  item in  the
menu of  an  existing  application.   Second,  many
windows are dynamic, with the objects present in
the window unknown until run time.  In Cognits,
this type of window is treated as the rule  rather
than the exception.  Third, resources are difficult
to port across systems.  If much of the information
about  a  window is  held  in  resources,  it  will  be
difficult to achieve the goal of supporting the same
screen appearance across multiple platforms.

The Cognits approach is to allow objects described
in  the  code  to  create  and  manage  resources
describing  size,  color,  and  location.  This  forces
resources to correspond to objects referenced in
the program.  The 



Cognits:  A Portable Library of Intelligent Classes  7
resource editor is not a separate program but is
built  into  all  objects  capable  of  supporting
resources.

Portability

Portability  is  a  major  design  driver.   It  was  the
desire of the author to write portable code, which
motivated the development of his own class library,
rather  make  use  of  existing  libraries.   Cognits
achieves portability in three ways.  First, no object
interacts  directly  with  the  underlying  graphic
system.  Instead, all objects interact with a virtual
GUI through a series of defined subroutine calls.
Most  of  the drawing calls  have the same names
and  arguments  as  the  QuickDraw  traps.   File
access follows POSIX conventions.  Macintosh file-
access  structures  are  on  alternative  systems
versions of QuickDraw.  Calls are written with the
underlying draw commands.  Second, much of the
more  sophisticated  functionality  is  not  utilized.
For  example,  the  ListManager  is  not  available;
instead,  applications  are  expected  to  develop
equivalent  functionality  by  means  of  lower-level
Quickdraw routines.  Third, high-level objects do
not  include  system-specific  header  files  such  as
Quickdraw.h, which forces all operations to occur
through system independent low-level calls.

The  Cognits  system  recognizes  a  collection  of
system-dependent opaque types.  These structures
represent,  for  example,  native  windows,
graphports,  and  fonts.   Each  type  may  be
referenced in system-independent code only as an
argument  to  a  collection  of  system-dependent
subroutines.   These  routines  create,  destroy,
manipulate,  and  access  key  data  from  these
structures.

The  system-dependent  structures  of  Cognits
include the following:

WINDOWPtr:   A  window on the  native  system.
Windows may be native, headerless, or temporary.

BITMAPPtr:  A structure that may be selected for
drawing.   This  is  a  Mac  GraphPort  or  an  X
Drawable.   Every  WINDOWPtr  contains  a
BITMAPPtr.  BITMAPPtrs may be either on screen
(in a window) or off screen.

PICTUREPtr:  A structure that can store drawing
commands.  On the Mac this is a Pict structure,
and on other systems it is a collection of postscript
text.

MENUPtr:  A structure  representing a pulldown
menu.  This is defined only on systems (such as the
Mac and MS Windows) that supply native menus.
CURSOR:   A structure that represents a system
cursor.

Drawing Model

Cognits supports a drawing model similar to that
used in the Mac toolbox.  Drawing commands such
as  DrawLine  and PaintRect  are  called  only  with
coordinates.  The system maintains a current port
(BITMAPPtr)  and  current  pen  colors,  style,  and
size, as well as the current font.  Characteristics of
this implicit  port are altered in separate calls  to
set  color,  font,  and  port.   This  differs  from  the
model  used  by  MS  Windows  and  X  Windows,
where the port and in some cases the pen are part
of the call to draw.

Events Model

Cognits  translates  events  from  the  underlying
system into its own event record.  The structure of
the events model is similar to that of the toolbox
but the event types are different. Mouse clicks are
translated into  generic  clicks  of  a  virtual  mouse
with  a  large  number  of  buttons  (e.g.  a  single
mouse click is  called a BlackMouseClick,  a  click
while  the  command  key  is  held  is  called  a
RedMouseClick,  and  a  double  click  is  called  a
PinkMouseClick).  This frees the widget from the
need to determine the type or number of mouse
clicks,  by  placing  all  of  this  code  in  the  event
manager.  It also allows clicks on a multiple-button
mouse to be mapped in the event manager without
affecting  the  rest  of  the  program's  code.   In
addition, the event manager takes care of events
within window controls such as the go-away box.

Updates

A traditional approach in Macintosh programming
is to handle all drawing through update events.  An
update may thus occur for two reasons.  First, the
system may determine that a region of the window
has become invalid; this occurs when the window
is first exposed or when an overlaying window is
removed, revealing a previously obscured section
of  the  window.   An  application  may  use  this
invalidation  when  the  data  represented  by  a
section  of  the  window  are  invalid  and  require
updating. 

Cognits uses only the first mechanism.  In Cognits,
when an object such as a text field wants to update
itself, it marks itself as "dirty" and sends messages



Cognits:  A Portable Library of Intelligent Classes  8
to  enclosing  objects  that  a  subobject  requires
updating.  



Cognits:  A Portable Library of Intelligent Classes  9
As part of the event loop, a Redraw command is
issued to redraw all dirty objects.  This mechanism
is used for two reasons.  First, it separates what
are two distinct operations:  one in which an object
requires  redrawing  because  a  region  of  the
object's window has been obscured, and another in
which an object  requires  redrawing because the
data that object represents require a change in the
screen  image.   In  the  former  case  a  current
Picture or offscreen BitMap of the window may be
used as an efficient alternative to redrawing.  In
the latter case not only will objects be required to
redraw, but they will also have to alter any internal
variables  to  represent  the  current  state  of  the
data.  These are very different operations.

Another  reason  for  using  an  internal  update
mechanism is that if only a portion of the window
is  invalid,  an  efficient  program will  redraw only
those objects  lying within the invalid  region.   If
redrawing  is  performed by  sending  messages  to
invalidated widgets, the application will first have
to  find  those  widgets  that  lie  within  the  invalid
region.   If  a  widget  were  to  invalidate  a  region
rather  than  setting  an  internal  invalid  flag,  on
receipt of  an update event it  would have to test
whether it lies in the invalid region and requires
updating. If the update is an internal request, the
latter  test  is  redundant,  because  the  requesting
widget "knows" it is invalid.  

Cognits Classes

The  following  are  some  of  the  major  classes  of
controls contained in the Cognits class library:

WindowWidget:  The  basic  window  widget  is  a
standard  Macintosh  window.   The  root  class
generates  the  system  window  with  all  default
controls.   Subclasses  include  the
HeaderlessWindow,  which  generates  a  plain
window with no title bar,  and the  NextWindow,
which is a headerless window with a titlebar and
grow box added as  Cognits widgets rather than as
Macintosh controls.

ButtonWidget:   This  is  a  standard  button.
Buttons represent a callback function that may be
activated when the button is pressed.  The look of
the button may be altered by setting internal flags
as  shown  below.   Button  subclasses  include
IconButtonWidget,  which  displays  an  icon
instead of  text,  and  MenuButtonWidget,  which
brings up a pop-up menu when pressed.

TextField:   Textfields  are  capable  of  displaying
text.   Cognits  supports  two  broad  classes  of

TextField.   OutputOnlyTextWidgets can display
text but do not support text editing.  Users may
select  text  by line or select  the entire  field,  but
other granularity of selection is not supported in
this class.  Removing the need to edit and maintain
a correspondence between position and characters
allows  richer  output  styles.   Subclasses  support
alignment to tab stops and different coloring and
fonts in different columns.

The  EditableTextObject represents  an  object
similar to early TextEdit fields.  Only a single font
and  color  for  all  text  are  supported.   Cut  and
paste, and selection by character, word, or line are
also supported.  Text length is not limited to 32K
but rather is constrained only by system memory.

EditableTextObjects are subclassed according to
the type of data represented.  The text object has
the  responsibility  of  representing  the  following:
FloatWidgets represent  doubles,
IntegerWidgets represent ints, BooleanWidgets
represent  doubles.  Other  specialized  widgets
represent Points, pointers to Objects.

GraphSurface:  This is the fundamental object for
scientific  graphics.   The  GraphSurface  defines  a
mapping  from  x  and  y  values  to  screen
coordinates.  GraphSurfaces  may  autoscale  to
guarantee that all  objects within the surface are
visible.  When drawn, the surface is responsible for
adding  titles,  labels,  and a  grid  to  the resultant
graph.

GraphSurfaceObject:   This  is  an  object
representing some data given as floating-point x,y
pairs.   GraphSurfaceObjects  are  responsible  for
drawing their data in a coordinate system defined
by the GraphSurface,  and for telling the surface
what  the  limits  of  their  represented  values  are.
GraphSurfaceObjects  may  represent  a  single
point, a collection of points, or a polygon.

ScrollBars:   Scrollbars  are  not  treated  as  an
independent  object.   They  are  always  created
programatically  by  the  object  requiring  scrolling
and are a view of that object.  Scrollable objects
support two methods, one to indicate their state of
scroll and one to  set their scroll to a new state.
Scrollbars  support  user  interaction  to  alter  the
object's scroll state. 
Dynamic Windows



Cognits:  A Portable Library of Intelligent Classes  10
Cognits recognizes two types of windows:  static
and  dynamic.   Static  windows  have  resources
describing  the  size  and  placement  of  all  objects
within the window.  Dynamic windows are created
at  runtime  with  no  knowledge  of  the  window's
contents.  Cognits places objects within windows
as  the  windows  are  created.   A  series  of
procedures is used to place widgets automatically
within  a  developing  window.   When  objects  are
generated  they  may  be  sized  and  placed  by
passing in a Quickdraw Rect. If no Rect is passed,
the objects themselves perform default placement
and  sizing.   The  precise  algorithm  is  class-
dependent.  Buttons arrange themselves in a row
until the next button will not fit in the enclosing
object, then they begin a new row.  Many larger
objects  will  place  themselves  at  the  left  of  the
enclosing space.  Resizable objects such as graphs
will  place  themselves  below  the  last  object  and
occupy  the  lower  portion  of  the  window.   Hints
may  be  passed  to  objects  for  better  placement.
The  EndRow  hint  causes  the  next  object  to  be
placed at the left edge, below other objects.

A  particularly  useful  method  is  SizeToFit.   This
sets the size of an object to the smallest size that
will  enclose all  subobjects.   A  typical  window is
built  by creating a window of some default size,
placing  a  number  of  objects  within  the  window,
and finally calling SizeToFit to set the window size
to that required to hold all subobjects.

The advantage of dynamic placement and sizing is
flexibility.  While windows may not look as good as
they  would  when  objects  are  handplaced,  they
allow windows to  maintain a reasonable  look  as
objects are added or deleted.  In most phases of
code  development,  the  ability  to  generate
reasonable  windows  with  minimal  coding  is  an
advantage.  Once the contents of a window have
gelled,  the  window  may  be  made  static  and
handcrafted as described below.

Static Windows

Static windows allow the window's characteristics
to be stored in resources.  The resource does not
describe  a   Macintosh  control  but  rather  a
collection  of  parameters  for  each  widget  in  the
window.   Parameters  include  foreground  and
background  colors;  font  type  and  size;  object
placement;  properties  such  as  border  (or  no
border) rounded (or square) corners, and shadow.
The properties describe the way a widget is drawn,
but they do not specify what the widget is, what
data  it  represents,  or  how  it  interacts  with  the
user.  Those details are specified in the code that

created the widget.

Static windows differ from windows created from
Resedit  in  that  the  objects  within  the  static
window are created by the code rather than the
resource.   With  Cognits  static  windows,  widgets
are created that search for resources to tell them
their look and feel.  With resource dialogs, controls
are created to have a particular a look and feel,
then look for code to tell them their functionality.

Static  windows  may  enter  a  ResEdit-like  mode
where  users  may  use  the  mouse  to  size  and
located all objects.  Double-clicking on objects in
this  mode opens  an  editor  window,  allowing  the
modification of color,  font,  and style.   Users can
then remember the new configuration by copying a
resource  description.  This  capability  moves  the
responsibility for the window configuration from a
separate editor to the application, and allows end
users to reconfigure displays easily.

Portable Dialogs

The proper operation of the Macintosh depends on
a number of standard dialogs, which are used to
open  files,  select  colors,  and  control  printing.
Some systems use similar dialogs; for example, MS
Windows  has  dialogs  for  file  selection.   It  is
uniformly  true  that  the  call  and  the  arguments
differ radically.   The solution is  to wrap system-
dependent  dialogs  in  a  wrapper  that  offers  the
application  a  consistent  view of  the  transaction.
For  example,  the  boolean  GetExistingFile(char
TheName[]) takes a pointer to a character buffer
that may contain a candidate file name.  After the
dialog, TheName contains a string containing the
file  name,  including  directory  and  volume  (if
needed).   A return is  true if  a  valid  selection is
made.   An  earlier  call  can  restrict  choices  to  a
specific creator or extension.

The strategy is to determine the nature of the final
product  of  the  dialog,  then  to  default  most
arguments  and  allow  a  simple  call  to  proceed.
When  no  equivalent  dialog  exists,  a  window  is
generated  that  presents  the  user  with  the
appropriate  choices,  and  events  are  processed
until the dialog is dismissed.

Cognits  does  not  support  the  concept  of  modal
dialogs.  Instead, users may always access other
applications  or  desk  accessories  from  within  a
dialog;  in  most  cases,  users  may  quit  the
application  or  access  other  windows  without
leaving a dialog.  A "nag" feature 



Cognits:  A Portable Library of Intelligent Classes  11
keeps  popping  the  current  dialog  to  the  top  at
regular intervals so the user cannot simply ignore
it.

Cognits Paradigms

Macintosh programmers are very familiar with the
code  required  to  handle  significant  Macintosh
events such as key presses or mouse clicks.  In the
Cognits  environment,  events  are  translated  into
methods  that  are  invoked.   The  way  Cognits
handles a mouse click is shown below.

Button Press

Normally  buttons are created with  the  following
code:

SimpleButton("ButtonName",ButtonWindow,Butto
nCallback)

where ButtonWindow is the window or containing
widget, and ButtonCallback is a callback function
taking  a  single  argument,  the  button's  address.
Normally  developers  will  not  have  to  deal  any
more  extensively  with  buttons.   The  discussion
below  details  the  way  the  underlying  system
handles a button click.

• WaitNextEvent returns an event.

• The event is sent to the event manager.

• The event manager determines that the event is
a mouse click and sends it to the mouse manager.

•  The  event  manager  determines  that  the  click
occurs in the window's content region.  If not it is
passed to other handlers.

• The mouse manager tests for modifier keys and
multiple clicks.  It then classifies the event.  For
example,  an  unmodified  click  is  a
BlackMouseDown,  a  command-click  is  a
RedMouseDown,  and  a  double  click  is  a
PinkMouseDown.

• The event manager finds the WindowWidget that
is managing the affected window.  The address of
this object is the Window's Refcon.

•  The  Event  manager  asks  whether  the
WindowWidget is the currently active window.  If
not, the Widget is activated and no further action
is taken.

• The Event manager then invokes the appropriate
method  for  the  window.   For  example,  for  an
ordinary  click  it  will  call   the  Window's
BlackMouseDown method.  BlackMouse is a click
of  a  virtual  mouse  button  representing  an
unmodified mouse click.

TheWindow->BlackMouseDown(ThePoint);

•  The  default  window's  mouse-click  handler
locates the actual widget clicked on.  It calls

ActualWidget = 
TheWindow->PointWithin(ThePoint);

(This method tests the point against the active
region of all objects in the window.  The highest
object  that  includes  the  point  is  returned.   If
TheWindow is returned, then the click occurred
outside  any  active  widget  and  no  action  is
taken.)

•  The  mouse  handler  for  the  active  widget  is
invoked:

ActualWidget ->BlackMouseDown(ThePoint)

The default action is to track the mouse:

if(this ->TrackMouse())

(TrackMouse will call Hilite when the mouse is
within  the  Widget,  and  UnHilite  when  the
mouse leaves.  The method continues tracking
the mouse until the mouse is released.  It then
returns  true  if  the  release  was  within  the
Widget, and false if not.

• A button will then invoke the Callback method.
Widgets hold the address of a callback routine that
is invoked at the end of the interaction with the
user:

this ->Callback();

Callback by default does the following:

(* MyCallbackRoutine)(this);

where  MyCallbackRoutine  is  the  address  of  a
routine that takes the widget as an argument.

The  above  approach  allows  many  levels  of
flexibility:  a widget that wants to pop up a menu
will override the BlackMouseDown handler to pop 



Cognits:  A Portable Library of Intelligent Classes  12
up a menu as soon as a click is received; a widget
that is to be dragged by the mouse will override
the TrackMouse method to support dragging; and
CheckBoxes override Callback to toggle their data
before invoking  the callback routine.   Users  are
rarely required to deal with the code at this level,
and only when designing special-purpose widgets
that have interesting interactions.

Display Update

Normally  the  way  a  field  is  updated  is  that  an
object  executes  the  method  UpdateDisplay()
without "worrying" about the resultant effect.  The
following  discusses  what  happens  when  the
display is updated.

The object sends an Update message to each View
Object.  The view then passes the update to the
target, the affected widget.  The widget in turn will
send Reconcile to all subwidgets, and this will be
passed recursively throughout the structure.

On receiving a Reconcile message a FloatWidget
(that is, a widget that represents a floating-point
number)  will  look  in  its  attachment.   The
attachment is the address of a float that the widget
represents;  it  compares the current  value of  the
represented  float  with  an  internal  float
representing the value associated with the current
text.  If the two values are different, it replaces the
internal value with the updated value, formats the
appropriate text, and sets its internal text.

Next the widget calls SetDirty().  This sets a flag,
the Dirty  Flag,  indicating that the next time the
window is redrawn the widget must redraw itself.
It  also  sets  a  flag  in  all  ancestors  requesting  a
redraw.   The  redraw  method  causes  all  widgets
with  dirty  subwidgets  to  send  Redraw  to  all
subwidgets.   Widgets  with  the  Dirty  Flag  set
Redraw themselves.  Redraw may be issued under
program control but is usually issued as part of the
event loop. 

Programming in the Cognits
Environment

Programming  in  Cognits  uses  the  following
paradigm.  A certain, frequently small collection of
objects is created.  At creation time these objects
are  given  instructions  as  to  how to  behave  and
what  they represent.   Users  rarely  need to  deal

with  the  event  handler;  they  merely  provide
callback routines to handle the results of pushing
buttons and setting values.  The programmer need
not deal with issues of placement and sizing.  The
only statement referring to sizing and placement
in  the  examples  below  is  the  method  SizeToFit,
which  makes  a  window  or  other  widget  large
enough to hold all the objects it encloses.

Note in the first  example the line SimpleButton,
which  creates  the  buttons  and  gives  all  the
required  information  as  to  how  to  draw  and
manage the buttons.  Once the buttons are created
the program need not worry about them.

While the actions of New, Open, Save, and Save As
under  the  file  menu  may  be  altered  by  the
application,  the default  actions are illustrated in
the  second  example.       The  statement
SetDocumentClass("Patient")  says  the  application
will be dealing with objects of class Patient.  This
will cause New to create an instance of the class
Patient and make this the current document.   It
will  also cause Open to open text  files and seek
instructions to create objects of this class.  Save
and Save As request the current document to write
a description of itself to disk. 

Programming Examples

The following are simple examples that illustrate
principles  of  Cognits  Programming.  The  first
shows the basic program skeleton and details how
the program is set up and events are handled. The
second example shows how a  new class  is  built
and how an application may be developed to deal
with that object.

Button Window Example

This creates and displays a window called "Button
Window".   It  adds  two  buttons  called  Beep  and
Quit to the window, then sets up callback functions
that  define  the  action  of  each  of  the  buttons.
Buttons  are  representations  CallbackFunction,
which is discussed below.

//  DoWidgetQuit is a built-in callback which does



Cognits:  A Portable Library of Intelligent Classes  13
// what WIDGETs programs normally do when 
QUIT is selected from the file menu  extern void 
DoWidgetQuit(WIDGET *Ignore); 

// ***********************************************  
// This is a simple Callback function - 
executed when the Beep                                          
//      Button is pressed.  Callback functions have 
no return and take
//      a single argument:  the affected Widget          
// ******************************************** **

void DoBeep(WIDGET *Ignore)
{

Beep();
}

       /* System dependent main declaration */
DECLARE_MAIN
{

WIDGET *TheWindow;   /* This is the 
window we will create                       */

/* Initialize - This should be the first 
executable statement */

INITIALIZE_MAIN 
/* Make theWindow  */
TheWindow = 

                     SimpleWindow("Button Window"); 
            /* Makes a button which Beeps   */

SimpleButton("Beep",TheWindow,DoBeep); 
          /*  make  button which Quits   */

SimpleButton("Quit",TheWindow,
DoWidgetQuit);  

          /* Resize TheWindow */
TheWindow->SizeToFit(); 

           /* Show TheWindow */
TheWindow->Activate();   
/* Handle events      */
SWEventLoop();  

}

Code Comments

DECLARE_MAIN: This  macro  declares  the  main
program.   A  macro  was  used  to  accommodate
differing styles of main declaration:  under Unix,
main is  declared with two arguments:   argc and
argv;  on  the  Mac,  main  has  no  arguments;  and
under Windows, main has four.  The solution is to
make  the  main  declaration  a  system-dependent
macro,  and  leave  the  job  of  processing  input
arguments  to  another  system-dependent  macro,
INITIALIZE_MAIN.

INITIALIZE_MAIN:   This  should  be  the  first
executable  statement  in  the  main  after  the
declaration  of  variables.   It  is  responsible  for

handling  any  command-line  arguments,  for
initializing  the  Cognits,  and  for  initiating  the
connection with the server.  The code called up by
this macro is system-dependent and may change in
later versions of Cognits.  The variables accessed
are hidden from the user.  INITIALIZE_MAIN may
declare local variables and thus needs to be placed
in a position to do so.
SWEventLoop(): This  handles  all  events.   In  an
event-driven program, the art of programming is
in developing a structure capable of handling all
allowed  events.   This  loop  waits  for  events  and
then processes them.  If no events are generated
by the  user,  the  system will  periodically  (ideally
about  5  to  10  times  per  second)  generate
NullEvents, initiating background processing.  The
program executes until the user selects Quit under
the  file  menu or  other  events  cause  the  routine
DoWidgetQuit() to be called.

Callback Functions

A  CallBackFunction  is  a  function  that  is  called
following the interaction of a user with a widget.
In the case of  Buttons,  MenuItems  and several
other  classes  of  Cognit,  the sole  function  of  the
widget  is  to  present  a  CallbackFunction  to  the
user.  CallbackFunctions take a single argument,
the address of the calling widget, and they return
nothing.   In  the  functions  used  in  the  following
example, the calling widget is ignored.

Example:   ACallbackFunction  That  Does
Nothing but Beep

void DoBeep(WIDGET *Ignore)
{

Beep();
}

A  major  topic  is  that  of  access  to  data  from  a
calling function.  Because the only argument is the
calling  widget,  only  the  following  data  are
accessible to a CallbackFunction:

(a) Global variables.  Good practice minimizes
the use of these.

(b) Data  pointed  to  by  the  widget  itself.
Widgets  have  a  pointer  to  an  object
represented  and  may  have  other  internal
pointers to data.



Cognits:  A Portable Library of Intelligent Classes  14

(c) All  ancestor  and  child  widgets.   Actually,
one  may  traverse  the  widget  tree  and
access any widget in the system.

(d) Any  data  pointed  to  by  any  accessible
widget.

(e) Any  data  pointed  to  by  any  accessible
object.

The  techniques  for  accessing  data  from
CallbackFunctions will be discussed in more detail
below.

A Discussion of Functions
Called in the Code

This  section discussed in detail the calls used in
the ButtonWindow example.

void *SimpleButton(char *Name,WIDGET
*Parent,CallbackFunction TheAction)

The  above  routine  creates  a  ButtonWidget.
ButtonWidgets  are  simple  objects  that  represent
an action to the user.  When the user clicks on a
button, the button remains highlighted as long as
the mouse remains within the button.  If the mouse
is released within the button, the CallbackFunction
is executed.

void DoWidgetExit(WIDGET *TheWidget)

This  routine  exits  the  program after  performing
cleanup.   It  is  the  routine  called  by  the  Quit
selection on the file menu.  The widget passed in is
ignored and can be NULL.  The details of what is
done  on  exit  and  how  to  modify  this  will  be
discussed below.

void Beep(void)

Do  whatever  is  needed  to  beep  the  standard
system beep in the standard manner.

Note that we did not remember the address of the
buttons.  Once a button was created, the program
specified all the information required to manage it.
Also note that the CallbackFunctions do not access
external  data.   Later,  the  ways  that
CallbackFunctions  access  data  will  be  a  major
topic for discussion.

Example:  A Program to Represent a Class of 
Objects

The following example shows how an application
can be designed to  deal  with a specific class  of
data.  First, the class Patient is derived from the
class ParentObject.  The parent class already has
and supports a name field.  Then fields are added
for  Age,  Height,  Weight,  and  Sex.   The  macros
CLASS_ATOM  and  START_METHODS  declare
auxiliary  structures  and  methods.
OBLIGATORY_METHODS declares these methods
and  creates  the  structures.   These  macros  are
deliberately  designed  to  allow  flexibility  in  their
actions.   START_VARIABLES  is  a  macro  that
declares methods related to new fields.  When new
fields  are  added,  the  BROWSEDECLARATION
macro and subsequent lines are needed to support
browsing of the new fields.

The class  declares  a  single  method—BuildEditor.
This adds widgets into an editor window.  One line
per field is required to add views of each of the
fields.   Note  that  in  the  declaration
SimpleLabeledBoolean  for  Sex,  we  declare  the
user's view of false as Female and true as Male.
The  rest  of  the  editor  window  (see  illustration
below) is set up in higher-level methods.  The Type
argument is ignored but may be used to support
different editor windows.

The main program has three setup calls.  First, it
assigns the text strip to a global related to text.
Second,  it  tells  the  system  that  the  current
document will be of class Patient.  This will cause
New to create an instance of Patient and call that
object's Edit method, opening up an edit window.
It also says that only a PatientObject is acceptable
as  the  CurrentObject.  If  we  had  overridden  two
more  methods  in  PatientObject:  WriteSelf  and
KeyWordRead,  we  could  support  saving  and
opening  files  describing  these  objects.  Finally,
ShowAboutWindow brings up the About window as
the application opens.

CLASS_ATOM(Patient);

class Patient : public ParentObject 
{

// declare methods for new fields
START_VARIABLES 
int        Age;
FLOAT      Height;
FLOAT      Weight;
boolean    Sex;
/* ************************ */
/*         Methods          */
/* ************************ */



Cognits:  A Portable Library of Intelligent Classes  15
 // declare methods for all classes

 START_METHODS(Patient)
virtual WIDGET *BuildEditor(WIDGET 

*TheDisplay,Atomic *Designator);

};

/* ******************** */
/* Class Macros                           */
/* *******************  */
#undef THISCLASS
#define THISCLASS Patient
#undef SUPERCLASS
#define SUPERCLASS ParentObject

OBLIGATORY_METHODS(Patient,ParentObject);

/*  **********************
Code for supporting the browser

  ******************* */

void THISCLASS::BROWSE_DECLARATION    /* 
Obligatory Boilerplate           */
{

BROWSE_VARIABLES;          /* Obligatory 
Boilerplate                   */

SUPERCLASS::BROWSE_CALL;   /* 
Obligatory Boilerplate                   */

                // Tell the Browser about Age
INTEGER_FIELD(Age);     
FLOAT_FIELD(Weight);  // Weight
 FLOAT_FIELD(Height);  // Height
 BOOLEAN_FIELD(Sex);   // sex

}

/* *********************************************

WIDGET *BuildEditor(WIDGET 
*TheWidget,Atomic *Designator)

Extend adds new fields
  ******************************************** */
WIDGET *Patient::BuildEditor(WIDGET 
*TheDisplay,Atomic *Designator)
{

// SUPERCLASS adds field for name - an 
inherited field

SUPERCLASS::BuildEditor(TheDisplay,Designator)
; 

// add widgets to represent each of the new 
fields

SimpleLabeledInteger("Age",   
TheDisplay,&Age,   NULL);

NewLabeledUnitWidget("Weight",TheDisplay,&Wei

ght,"Kg",NULL);   

NewLabeledUnitWidget("Height",TheDisplay,&Hei
ght,"cm",NULL);      

SimpleLabeledBoolean("Sex",   
TheDisplay,&Sex,   "Male","Female",NULL); 
}

// ******************************************** 
// Text for the About window
// ******************************************** 
char *AboutPatients  = "Welcome to Patients\r\r"
"Select New or Open from the File Menu\r\r"
"Developed by Steven M. Lewis,Ph.D.\r"
"The Aerospace Corp".;

DECLARE_MAIN
{

INITIALIZE_MAIN
         // what the About window says  

AboutText = AboutPatients;   
        // we are dealing with Patients

SetDocumentClass("Patient");  
      // Start with an About window

ShowAboutWindow();        
SWEventLoop();                // Handle events

}
Selecting New from the file menu brings up the
window shown below.  Initially, Name is "Untitled"
and all  fields are 0 (zero).   After  the window is
filled in it, it looks like the illustration below.  The
units Kg and cm are associated with Popup menus
of alternative units.  The button for Sex will toggle
Male to Female. 



Cognits:  A Portable Library of Intelligent Classes  16



Cognits:  A Portable Library of Intelligent Classes  17
Clicking on the editor window while holding

Option and Shift brings up a browser of the Patient
represented by the window.  This is scrolled to

show the lines added to the browser by the
BROWSE_DECLARATION  method. 

Code

Most of the code in this example created an Object
editor.  The BuildEditor command takes a window
and adds specific fields for the particular object.
The Baseclass Edit command creates the window,
adds buttons at the end, resizes it, and displays it.
Note that the only code we needed to supply to
manage the class was the code needed to add the
new fields to the editor and the browser 

WIDGET*SimpleLabeledInteger(char
*Name,WIDGET  *Parent,  int  *TheNumber,
CallbackFunction TheAction) 

This  routine  creates  a  LabeledInteger  widget,  a
composite widget consisting of a label and a text
field representing an integer.  TheAction is called
if the user alters the value by editing the text field.

WIDGET*SimpleLabeledBoolean(char
*Name,WIDGET  *Parent,  boolean  *TheNumber,
char  *FalseText,char  *TrueText,CallbackFunction
TheAction)

This  routine creates a LabeledBoolean widget,  a
composite widget consisting of a label, a text field
representing a boolean, and a toggle button.  The
text  will  either  be  FalseText  or  TrueText,
depending  on  the  boolean's  value.   The  toggle
button will toggle the field's value, as will clicking
on the text.  The toggle is thus a visible indicator
that  clicking  on  the  text  acts  like  a  button.
TheAction is called if the user alters the value.

WIDGET*NewLabeledUnitWidget(char
*Name,WIDGET  *Parent,  double  *TheNumber,
char *UnitName,CallbackFunction TheAction)

This  routine  creates  a  LabeledUnit  widget,  a
composite widget consisting of a label, a text field
representing a boolean, and a Unit  widget.  The
text  will  either  be  the  value  of  a  floating-point
number represented in the indicated units or blank
if there is no value  For example, if the text is "lbs"
the text will show the value multiplied by 2.54, the
number of kg per pound.  All internal values are in
MKS  units.   Clicking  on  the  units  brings  up  a
popup menu of alternative units.  For example, for
lbs the alternatives would all be units of weight.
All user input is interpreted in the alternative units

and converted to MKS units for internal storage.

ShowAboutWidget(void) 

This routine shows the AboutWindow.  There is a
default About window that shows AboutText.  The
routine to create this window may be replaced in
user code to achieve different effects.

SetDocumentClass(char ClassName)

This routine shows the AboutWindow.  There is a
default About window that shows AboutText.  The
routine to create this window may be replaced in
user code to achieve different effects.

Examples Summary

The  examples  show  the  ease  with  which  fairly
sophisticated applications can be developed with
Cognits.  The  developer  is  not  concerned  with
details such as management of or even placement
of  widgets.  These  are  handled  by  the  run  time
system.  The  ease  with  which  interfaces  can  be
developed  is  so  powerful  that  throwaway
interfaces can be created in the course of program
development  merely  to  give  developers  better
access to a developing system.

Future Directions

Future plans involve expansion in two directions.
First, the number of systems which are supported
will be increased. The Cognits package currently
runs  on  the  Mac,  X  Windows  and  DOS  using
Borland graphics. In the near future, a version will
be available under Microsoft  Windows.  A display
postscript version is contemplated. Another path is
to  use  the  XVT™  toolkit  to  generate  a  generic
version which relies on XVT™ for portability.

A second area of expansion is functionality. Future
versions  will  employ  automatic  code  generators
which parse header files and automatically write
the more routine code functions such as browsers
and  simple  displays.  Persistence  is  currently
supported  by writing  descriptions to  ASCII  files.
Future versions are planned to be able to read and
write objects to relational data bases. Portable use
of  sound  and  animated  images  is  also  under
consideration.



Cognits:  A Portable Library of Intelligent Classes  18

Summary

The  Cognits  package  is  a  class  library  that
simplifies programming on the Macintosh.  Cognits
combines the functionality of MacApp with added
features, including scientific graphics and built-in
object and class browsers.  In addition, by making
all calls to a virtual GUI, the package is portable
and  allows  developers  to  port  well-behaved
Macintosh applications cleanly to other operating

systems.  Cognits  distributes  responsibility  to
objects allowing good interfaces to be developed
with little more that a statement of the types of
data  requiring  representation.  The  ease  with
which interfaces can be developed is so powerful
that throwaway interfaces can be created in the
course  of  program  development  merely  to  give
developers better access to a developing system.
We  believe  that  these  object  oriented  tools
represent a powerful  new paradigm for program
development.


